SUMMARY OF ANSI X9.63
Public Key Cryptography for the Financial Services|ndustry:
Key Agreement and Key Transport using Elliptic Curve Cryptography

1. Scope

ANSI X9.63 defines key establishment schemes that employ asymmetric cryptographic
techniques. The arithmetic operations involved in the operation of the schemes take place in the
algebraic structure of an elliptic curve over afinite field. Both key agreement and key transport
schemes are specified. The schemes may be used by two parties to compute shared keying data
that may then be used by symmetric schemes to provide cryptographic services, e.g. data
confidentiality and data integrity.

2. Contents

The asymmetric key establishment schemesin ANSI X9.63 are used by an entity U who wishes
to establish a symmetric key with another entity V. Each entity has at least one elliptic curve key
pair. If U and V simultaneously execute a scheme with corresponding keying material as input,
then at the end of the execution of the scheme, U and V will share keying data. The keying data
can then be used to supply keys for symmetric algorithms.

ANSI X9.63 specifies a variety of asymmetric key establishment schemes. Eleven key agreement
schemes and two key transport schemes are provided in the document. A variety of schemes are
specified because of the wide variety of servicesthat it may or may not be desirable for akey
establishment scheme to provide, depending on the environment in which the scheme is going to
be used.

The standard also contains specifications for:
Elliptic curve domain parameter generation and validation
Key pair generation and public key validation
Challenge generation
Diffie_Hellman primitive
MQV primitive
Cryptogrpahic hash
Key derivation function
MAC calculation
Encryption transformation
Signature scheme.

In additon, for each scheme specified in the standard, an assessment of the security that is
afforded by the scheme is provided.

3. Crypographic Ingredients

3.1 Elliptic Curve Keying M aterial
The keying material needed to perform key establishment or key transport as specified by this
standard includes a set of domain parameters and one or more elliptic curve key pairs.

The domain parameters include:

q the number of elementsin the field

ab eementsof Fqthat define an elliptic curve E over Fq

G adistinguished point on an elliptic curve that is the base point or generating point

n the order of the base point G

- h the co-factor (the number of points on the curve, divided by n)

The domain parameters may be distributed, for example, in a public key certificate. Two classes
of domain parameters may exist: static domain parameters or egphemeral domain parameters.
Static domain parameters may be used with either static or ephemeral keys. Static domain
parameters are designated with a subscript of s when ephemeral domain parameters are also
involved in the key establishment scheme (i.e., gs, as, bs, Gs, N, hs). Ephemeral domain
parameters are used with ephemeral keys and are designated with a subscript of e (i.e., Qe, ae, be,
Ge, Ne, he).

An éliptic curve key pair consists of aprivate key d, and a public key Q. Two classes of key
pairs may be used in a scheme: static key pairs (ds, Qs) and ephemeral key pairs (de, Qe). Static
key pairs are longer-lived; the public key from a static key pair (Qs) may be included in a public
key certificate. Ephemeral keys are shorter lived (e.g., for the duration of a message or a
communication session).

3.2 Domain Parameter Generation and Validation

ANSI X9.63 provides primitives for both domain parameter generation and validation. The
primitives differ depending on the characteristics of the underlying field, i.e., for the fields F,
and F,™. Domain parameter validation may be used to verify that the domain parameters satisfy
certain basic criteria(e.g., g=p isan odd prime; a, b, Xg, Y are integersin the interval [0, p-1];
etc.). Domain parameter validation could be performed by a Certificate Authority (CA) or some
other trusted party.

3.3 Key Pair Generation and Public Key Validation

ANSI X9.63 provides primitives for key pair generation and public key validation. Both static
keys and ephemeral keys may be generated using the same primitives. Public key validation may
be used to verify that an entity’s public key Q appears to satisfy certain basic criteria (e.g., Qis
not the point at infinity; Xq and yg are elements in the field indicated by the domain parameters,
etc.). A static public key could be validated, for example, by a CA, atrusted party or aresponder
in a key establishment protocol. An ephemeral public key might be validated by the responder in
a key establishment protocol.

3.4 DiffieeHellman Primitive (dhp)

The Diffie-Hellman primitive is used to compute a shared secret value. Two variants of the
Diffie-Hellman primitive are provided — one without the use of the co-factor h, the other using
the co-factor.

[nput:
aprivate key da (A isthelocal party)

apublic key Qg (B isthe other party)

Compute:
P = [h]daQs (where P isapoint and h is the co-factor)
Z=Xp (where x, is the x coordinate of P)

Output: z, the shared value

3.5MQV Primitive

The MQV primitive derives a shared secret value from two secret keys owned by the local party
(A) and two public keys owned by the other party (B). Note that in the schemes, the key pairs
defined below may be set to the same values.

[nput:
2 key pairsfor A — (dia, Qua) and (dza, Q20)
2 public keysfor B Qi g and Qg

Compute:
implicitsigy = dou + (avf(Qzu) = diu) (mod n)
P=h" implicitsigy = (Qzv+ (avf(Qzv) ~ Q1v))
Z= X%

Output: z, the shared value.

3.6 Associate Value Function

The associate value function will be used to compute an integer associated with an élliptic curve
point. The integer is approximately half the length of the field elements associated with the
elliptic curve point.

[nput:
A valid set of domain parameters

A point P® apoint at infinity

Compute: -
Xp' = Xp (Mod 2:/22‘\') (where f=dogni)
avi(P) = xp + 29120

Output: avf(P)

3.7 Cryptographic Hash Function

The crypographic hash functions are used to calculate the hash value associated with a bit string.
The functions are used by the key derivation function specified in Section 3.8. Any ANSI-
approved hash function that offers 80 bits of security or more may be used, i.e. any ANSI-
approved hash function whose output is 160 bits or more. Possibilities include the hash function
SHA-1 specified in ANSI X9.30, Part 2 (The Secure Hash Algorithm 1).

Input: A bit string Data
Compute: Hash = H(Data) (where H is the established hash function)

Output: Hash

3.8 Key Derivation Function (kdf)

The key derivation function is used by the key agreement schemes to compute keying data from
a shared secret value. The key derivation function will also be used by the asymmetric
encryption schemes. The key derivation function is a simple construction based on a hash
function.

Input:
Shared value z
Key length keydatalen
Optiona Sharedinfo

Compute:
Set counter = 1

For i = 1to | = é&eydatalen/hashlenu , do:
Hash, = H(Z || counter || [Sharedinfo])
Increment counter
Increment i
Let HHash; denote Hash if keydatalen/hashlen is an integer, and let it denote the
(keydatalen - (hashlen” j)) leftmost bits of Hash; otherwise
Set KeyData = Hashs||Hashy||... |[Hash;.1||HHash;

Output: KeyData

3.9 MAC Scheme

A tagging transformation and tag checking transformation is associated with the message
authentication code (MAC) scheme. The MAC scheme is used by some key agreement schemes
to provide key confirmation, and by the augmented encryption scheme in Section XXXX??2.
Any ANSI-approved MAC that offers 80 bits of security or more may be used, i.e. any ANSI-
approved MAC that uses keys of length 80 bits or more and that outputs tags of length 80 bits or
more. Possibilities, therefore, include HMAC specified in ANSI X9.71, Keyed Hash Message
Authentication Code.

[nput:
A hit string Data to be MACed
A hit string MacKey

Compute:
MacTag = MACwacke/(Data)

3.10 Asymmetric Encryption Scheme

The asymmetric encryption scheme is used as follows. The sender uses the encryption
transformation of the scheme to encrypt some data. The recipient, after being sent the encrypted
data, decrypts the encrypted data using the decryption transformation of the scheme. The
asymmetric encryption scheme is used by the key transport schemes.

3.10.1 Encryption Transformation

[nput:
Data to be encrypted of length datalen bits

Public key of the recipient Qg
Two optional bit strings SharedData; and SharedData,

Compute:
Generate (de, Qe)

z= dhp(de, Qs)

EncKey || MacKey = kdf(z, datalen+ mackeylen, [SharedData;])
MaskedEncData = Data A EncKey

Compute MacTag for MacData = MaskedEncData || [SharedDatay]

Output: Qe || MaskedEncData || MacTag

3.10.2 Decryption Transformation

Input:
EncryptedData = Qe || MaskedEncData’ || MacTag’
Private key dg
Two optional bit strings SharedData; and SharedData,

Compute:
Validate Q¢
z= dhp(ds, Q¢')
EncKey || MacKey = kdf(z, maskedencdatalen+mackeylen, [SharedData;])
EncData = MaskedEncData’ A EncKey
Verify that MacTag' is correct for MaskedEncData || [SharedDatay] using MacKey

Output: Data

3.11 Signature Scheme

The signature scheme is used as follows. The sender uses the signing transformation to compute
a signature on some data. The recipient, after being sent the data and signature, checks the
validity of the signature using the verifying transformation. The signature scheme is used by the
3-pass key transport scheme specified in Section XXX. The signature scheme supported is the
Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA is specified in ANSI X9.62, The
Elliptic Curve Digital Sgnature Algorithm (ECDSA). The signature process produces two
integers: rsig and ssig.

4. Security Attributes

A number of security attributes may be provided by a particular key agreement or key transport

scheme. These attributes are:

- Implicit Key Authentication (IKA) — establishes the identity of the other party; provided by a
static key that is bound to the other party’s identity.
Explicit Key Authentication (EKA) — knowledge that the other party did indeed calculate the
shared key; may be provided by doing key confirmation in a scheme that provides implicit
key authentication.
Forward Secrecy (FS) — the assurance provided to an entity that the session key established
with another entity will not be compromised by the compromise of either entity's static
private key in the future; provided by the use of an ephemeral public key.
Entity Authentication (EA) — consists of identification and “liveness’, whereas EKA is
concerned with identification and key possession. If explicit confirmation is deemed
adequate to demonstrate liveness, then it is possible for schemes that achieve EKA to aso
support EA. Whether or not the two are synonymous depends upon the interpretations of
“entity” and “liveness’, and on the timespan for the protocol that realizes the key agreement
scheme. Therefore, the EA attribute does not follow automatically from EKA. ANSI X9.42

does not address entity authentication more specifically because EKA is neither always
necessary nor always sufficient to achieve EA.

Known-Key Security (K-KS) — assurance that a particular session key will not be
compromised as aresult of the compromise of other keys; provided by using an ephemera
key to compute the key(s) for only one session.

Unknown Key-share Resilience (U-KS) — assurance provided to one party (A) that if party A
and party B share a session key, then party B does not mistakenly believe the session key is
shared with an entity other than party A.

Key-Compromise Impersonation Resilience (K-CI) — assurance provided to a party (A) that,
even if an adversary somehow obtains party A’s static private key, the adversary cannot
successfully impersonate another party to party A.

5. Key Agreement Schemes

In the following schemes, the initiator is party U, and the responder is party V. The acquisition of
static public keys is outside the scope of ANSI X9.63, but isrequired for the key establishment
process. These acquisitions are shown as “dashed arrows”.

5.1 Ephemeral Unified Model

Ephemera parameters (Qe, ae, be, Ge, Ne, and he) are generated for the “system” (a community of
users). The hash function must be agreed upon.

This scheme corresponds to the dhEphem scheme in ANSI X9.42. The scheme provides Known-
key Security if explicit authentication of al session keysis supplied for all session keys.
Interactive communications are required, i.e., both parties must actively participate in the key
agreement process.

Party U Transmissions Party V

Generate ephemeral key Qeu
pair (deu, Qeu) USING (e, e, >
De, Ge, Ne, and hy)

Validate Q’ eU

Qev Generate ephemeral key
< pair (deyv, Qev) USING (e, e,

Pe, Ge, Ne, and he)
Validate Q’ eV
Compute the shared value Compute the shared value

(Ze = dhp(deu, Q'ev)) using
(Je, @er be, Ge, Ne, and he):
Ze = [N]deuQev

(Ze = dhp(deyv, Q'eu)) Using
(Je, @er be, Ge, Ne, and he):
Ze = [N]devQeu

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

5.2 One Pass Diffie Hellman

Static parameters (g, a, b, G, n, and h) are generated for the “system” (a community of users).
Each entity that acts as a responder generates a static key pair (ds, Qs) using the static parameters.

The entities must agree upon a hash function.

This scheme corresponds to the dhOneFlow scheme of ANSI X9.42. The scheme provides
Implicit Key Authentication and Key Compromise Impersonation resilience to the initiator.
Interactive or store-and-forward communications (only one party actively participates) are

required.

Party U

Transmissions

Party V

Acquire V’s static public
key (Qsv)

Qs,V

Generate ephemeral key

pair (deu, Qeu) Using (g, a,
b, G, n, and h)

Valldate Q’ eU

Compute the shared value
(Z = dhp(deu, Q'sv)) using
(g, a, b, G, n, and h):
Z=[h]deuQsv

Compute the shared value
(Z= dhp(dsv, Q"eu)) using
(g, a, b, G, n, and h):
Z=[h]dsv Qeu

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

5.3 Static Unified M odd

Static parameters (gs, as, bs, Gs, Ns, and hg) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the static parameters. The hash

function must be agreed upon.

This scheme corresponds to the dhstatic scheme of ANSI X9.42. The scheme provides Implicit

Key Authentication to both parties, and Unknown-Keyshare Resilience to both parties if

knowledge of the private key (also known as proof of possession) was checked during the
certification of the static public keys. Applications involving interactive or store-and-forward
communications or neither party online can be used.

Party U Transmission Party V

Acquire V's static public Qsv
key (Qs,V) G

Compute the shared value
(Zs = dhp(dsu, Qsv)) using
(0s, @, bs, Gs, N, and hy):

Z=[h]dsuQsv
Determine the shared key: Notify V that U wants to
KeyData = kdf(Zs, communicate
keydatalen, [SharedData] >
Qsu Acquire U’ s static public
------------ > | key (Qsu)
Compute the shared value

(Zs = dhp(dsy, Qsu)) using
(0s, @s, bs, Gs, N, and hy):
Zs=[] ds\Qsu

Determine the shared key:
KeyData = kdf(Zs,
keydatalen, [SharedData]

5.4 Combined Unified Model with Key Confirmation

This scheme is a hybrid of the Ephemeral Unified Model and the Static Unified Model schemes.
A MAC isused to provide Key Confirmation. This scheme provides an example of how key
confirmation could be provided.

Static and ephemeral parameters ((qs, as, bs, Gs, Ns, ad hs) and (Ge, @, be, Ge,Ne, and he)) are
generated for the “ system” (a community of users). Each entity generates a static key pair (ds,
Qo) using the static parameters.. The entities must determine the MAC scheme and hash function
to be used.

There is no corresponding scheme in ANSI X9.42. This scheme provides al security attributes
except Key Compromise Impersonation resilience to both parties. Interactive communications
are required.

Party U Transmission Party V

Acquire V's static public Qsv

key (Qsv) T

Generate ephemeral key Qeu

pair (deu, Qeu) USING (e, 2e, >

De, Ge,Ne, aNd he)

Validate Q’ eU
Qsu Acquire U’ s static public
------------- > | key (Qsv)

Generate ephemeral key

pair (dev, Qev) USING (Qe, e,
be, Ge, ne, and he)

Compute the shared value

(Zs = dhp(dsv, Qsu))using
(0s, @s, bs, Gs, N, and hy):
Zs=[h]ds\Qsu

Determine MacKey =
kdf(Zs, mackeylen,
[SharedDatay]

Create MacData; = 02 || V
[[U || Qev || Qeu || [Texts]

<

Qev; [Text1], MacTag;

Create MacTag; =
MaCwuacke(MacDatay)

Val | date Q’ eV

Compute the shared value
(Zs = dhp(dsu, Qsv)) using
(s, as, bs, Gs, N, and hy):
Zs=[h]dsuQsv

Determine MacKey =
kdf(Zs, mackeylen,
[SharedData]

Create MacData; = 02 || V
[[U || Qev || Qeu || [TeXts]

Verify that the received
MacTag; is correct for
MacData;

Create MacData,= 03 || U
[Vl Qeu |l Qev || [Texty]

Create MacTag, = [Text;], MacTag;

MaCwuacke(MacDatay)
Create MacData;= 03 || U
| VI Qeu [l Qev | [Texty]
Verify that the received
MacTag, is correct for
MacData,

Compute the shared value Compute the shared value

(Ze = dhp(deu, Q'ev))using
(Je, @er be, GeNe, and he):
Ze=[h]deuQev

(Ze = dhp(dev, Q'eu)) Using
(Je, @er be, GeNe, and he):
Ze=[h]devQeu

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedDatay]

5.5 One Pass Unified M od€

10

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters. A hash
function must be agreed upon.

This scheme corresponds to the dhHybridOneFlow scheme of ANSI X9.42. The scheme
provides Implicit Key Authentication to both parties, Key-Compromise Impersonation resilience
to the initiator, and Unknown Key-Share Resilience to both parties when knowledge of the
private key is checked during the certification of the static public keys. Interactive or store-and-
forward communications are required.

Party U Transmission Party V
Acquire V's static public Qsv
key (Qsv) s - - i e --- -
Generate ephemeral key Qeu
pair (deu, Qeu) USING (q, &, >
b, G, n, and h)
Validate Q' e u
Qsu Acquire U’ s static public
------------- > | key (Qsu)
Compute the shared value Compute the shared value

(Ze = dhp(deu, Qsv)) using
(g, a, b, G, n, and h):
Ze=[h]deuQsv

(Ze = dhp(dsv, Q' eu)) using
(g, a, b, G, n, and h):
Ze=[N]devQ'eu

Compute the shared value
(Zs = dhp(dsu, Qsv)) using
(g, &, b, G, n, and h):

Compute the shared value
(Zs = dhp(dsv, Qsu)) using
(g, a, b, G, n, and h):

Zs=[h]dsuQsv Zs=[h]dsv Qsu
Z= 27| Zs Z=2Ze|Zs
Determine the shared key: Determine the shared key:

KeyData = kdf(Z,
keydatalen, [SharedData]

KeyData = kdf(Z,
keydatalen, [SharedData]

5.6 Full Unified M odel

Static and ephemeral parameters ((0s, @s, bs, Gs, Ns, ad hs) and (e, @, Be, Ge,Ne, and he)) are
generated for the “system” (a community of users). Each entity generates a static key pair (ds,
Qs using the static parameters. The hash function must be agreed upon.

This scheme corresponds to the dhHybrid2 scheme of ANSI X9.42. The scheme provides
Implicit Key Agreement to both parties, Known-Key Security and Forward Secrecy to both
partiesif explicit authentication of all session keysis performed, and Unknown Keyshare
Resilience to both parties if knowledge of the private key was checked during the certification of
the static public keys. Interactive communications are required.

11

Party U Transmission Party V
Acquire V's static public Qsv
key (Qsv) € e
Generate ephemeral key Qeu
pair (deu, Qeu) >
Validate Q’ eU
Qsu Acquire U’ s static public
------------- > | key (Qsu)
Qev Generate ephemeral key
< pair (deyv, Qev) USING (e, e,

De, Ge,Ne, aNd he)

Validate Q' ey USING (Ce, @e,
De, Ge,Ne, and he)

Compute the shared value

(Ze = dhp(deu, Q'ev)) using
(Je, @er be, GeNe, and he):
Ze=[h]deuQev

Compute the shared value

(Ze = dhp(dev, Q'eu)) using
(Je, @er be, GeNe, and he):
Ze=[h]deyv Q' eu

Compute the shared value
(Zs = dhp(dsu, Qsv)) using
(0s, @s, bs, Gs, N, and hy):

Compute the shared value
(Zs = dhp(dsv, Qsu))using
(Gs, &s, bs, Gs, Ns, and h):

Zg: [h] dS,UQS,V ZS: [h] dS,VQS,U
Z= 27| Zs Z=2Ze|Zs
Determine the shared key: Determine the shared key:

KeyData = kdf(Z,
keydatalen, [SharedData]

KeyData = kdf(Z,
keydatalen, [SharedData]

5.7 Full Unified Model with Key Confirmation

This scheme provides an example of how key confirmation could be provided to the Full Unified
Model.

Static and ephemeral parameters ((qs, as, bs, Gs, Ns, ad hs) and (Ge, @, be, Ge,Ne, and he)) are
generated for the “system” (a community of users). Each entity generates a static key pair (ds,
Qo) using the static parameters. The entities must determine the MAC scheme and hash function
to be used.

Key Confirmation is not specified in ANSI X9.42. The scheme provides all security attributes
except Key Compromise Impersonation resilience to both parties. Interactive communications
are required.

Party U Transmission Party V

Acquire V’s static public Qsv
key (Qs,V) <- - - - - - - - = - - - -

Generate ephemeral key Qeu
pair (deu, Qeu) USING (Ce, e,
De, Ge,Ne, and he)
Validate Q’ eU
Qsu Acquire U’ s static public

key (Qsu)

Generate ephemeral key
pair (dev, Qev)

Compute the shared value
(Ze = dhp(dev, Q'eu)) Using
(s @, De, Ge,Ne, and he):
Ze=[N]devQeu

Compute the shared value
(Zs = dhp(dsv, Qsu)) using
(9s, as, bs, Gs, Ns, and hy):
&= [h] ds,VQs,U

Z= 7.2

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
mackeylen + keydatalen,
[SharedData])

Create MacData; = 02 || V
[U [] Qev [l Qeu || [Texty]

<

Qev; [Text1], MacTag;

Create MacTag; =
MaCwuacke(MacDatay)

Val | date Q’ eV

Compute the shared value

(Ze = dhp(deu, Q' ev))using
(Je, @er be, GeNe, and he):
Ze=[h]deuQev

Compute the shared value

(Zs = dhp(dsu, Qsv))using
(0s, @s, bs, Gs, N, and hy):

Zs=[h]dsuQsv

Z= 7| Zs

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
mackeylen + keydatalen,
[SharedData])

Create MacData; = 02 || V
[l Ul Qev |l Qeu |l [Texts]
)

Verify that the received
MacTag; Is correct for

13

MacData;

Create MacData,= 03 || U
[Vl Qeu |l Qev || [Texty]

Create MacTag, = [Text;], MacTag,
MaCwyackey(MacDatay) >

Create MacData,= 03 || U
[VIl Qeu |l Qev | [Texty]

Verify that the received
MacTag, is correct for
MacData,

5.8 Station-to-Station

The system parameters ((Qe, e, e, Ge, Ne, he)) and ((Tsig, asigs Psig, Gsig, Nsig, Nsig)) are generated for
the “system” (a community of users). Each entity generates a signature key pair (dsg, Qsg) Using
the system parameters (Qsg, asg, Dsig, Gsig, Nsig» Nsig). The entities must agree on the MAC scheme
and hash function to be used.

There is no corresponding scheme in ANSI X9.42. This scheme provides all security attributes to
both parties. Interactive communications are required.

Party U Transmission Party V
Acquire V’s signature key Qsigv
(Qsig,v) O
Generate ephemeral key Qeu
pair (deu, Qeu) USING (T, @, >
De, Ge, Ne, and he)
Validate Q’ eU
Qsigu Acquire U’ s signature key
""""""" > (Qsig,U)

Generate ephemeral key

pair (dev, Qev) USING (Qe, e,
be, Ge, ne, and he)

Compute the shared value
(Ze = dhp(deyv, Q'eu)) Using
(Je, @er be, Ge, Ne, and he):

Ze=[h]dey Qeu

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Ze,
mackeylen+ datakeylen,
[SharedData])

Construct Data; = Qev ||
QeullU|| [Texty]

Sign Data; using dsig,v, (e,

14

e, De, Ge, Ne, he), obtaini ng

rsigs and ssig;
Qev, r'SIQs, SSigy [Texty], Calculate MacTag; =
MacTag: MaCwiackey(Datas))

<

Validate Q' v Using (Qe, @e,
be, Ge, nEl he)

Construct Data; = Q' ev||
Qeul| U || Text’y

Verify that rsig’; and ssig’;
arevalid for Data; using
Qsig,V, (qgg, dsig, bsig, Gsig,
Nsig, Nsig)

Compute the shared value

(Ze = dhp(deu, Q'ev)) using
(Je, @er be, Ge, Ne, and he):

Ze=[h]deyQev

Determine the MAC key
and the shared key:
Mackey||KeyData = kdf(Z,
mackeylen+ keydatal en,
[SharedData])

Verify that the received
MacTag'; is correct for
Data; using 5.7.2

Construct Dataz = Qey ||
Qev|l V]| [Texts]

Sign Data, using dsg,u, (Qsig,
asg, bsig, Gsig, Nsig, hsig),
obtaining rsig; and ssig

Calculate MacTag, =
MaCwmacke/(Datay)

rsigy, SSigy, [Texts],
MacTag,

Construct Datay= Q' eu ||
Qev |[V|| [Text' 5]

Verify that rsig’; and ssig’»,
are valid for Data, using
Qsig,U, (qgg, Asigs bsig, Gsig,
Nsig, Nsig)

Verify that the received
MacTag', is correct for
Data,

5.9 One Pass M QV

15

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters. The entities
must agree on a hash function to be used.

This scheme corresponds to the MQV 1 scheme in ANSI X9.42. The scheme provides Implicit
Key Authentication to both parties, and Key Compromise Impersonation resilience to the
initiator. Interactive or store-and-forward communications may be used.

Party U Transmission Party V
Acquire V's static public Qsv
key (Qsv) - - me-aa--- -
Generate ephemeral key Qeu
pair (deu, Qeu) Using (q, &, >
b, G, n, and h)
Validate Q' ¢y using (q, &,
b, G, n, and h)
Qsu Acquire U’ s static public
------------- > | key (Qsu)

Compute the shared value Compute the shared value
(Z = mavp((dsu, Qsu), (deu, (Z = mavp((dsyv, Qsv), Qe,u,
Qeu), Qsv) Using (g, &, b, G, Qsu) Using (g, &, b, G, n,
n, and h): and h):
implicitsigy=deu+ avf(Qeu) implicitsigy=dsv+avf(Qsyv)
ds,U ds,V
R=h" implicitsigy” (Qsv+avf R=h" implicitsigy” (Qeu+
(Qsv)” Qsv) avf(Qeu)” Qsu)
Z=Xr Z=Xr
Determine the shared key: Determine the shared key:
KeyData = kdf(Z, KeyData = kdf(Z,
keydatalen, [SharedData]) keydatalen, [SharedData])

5.10 Full MQV

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters.

This scheme corresponds to the MQV 2 scheme in ANSI X9.42. The scheme provides Implicit
Key Agreement, Known-Key Security and Key Compromise Impersonation resilience to both
parties, and Forward Secrecy to both partiesif explicit authentication is supplied for all session
keys. Interactive communications are required.

Party U Transmission Party V

Acquire V’s static public Qsv
key (Qsv) - - -

Generate ephemeral key Qeu
pair (deu, Qeu) Using (g, a, >
b, G, n, and h)
Validate Q' ¢y using (q, &, b,
G, n, and h)
Qsu Acquire U’ s static public
----------- > | key (Qw)
Qev Generate ephemeral key
< pair (dev, Qev) USINg (q, ,
b, G, n, and h)
Validate Q’ eV
Compute the shared value Compute the shared value

(2= mavp((dsu, Qsu), (deu,
Qeu), Qsv, Q'ev) Using (q,
a, b, G, n,and h):
implicitsigu=deu+avf(Qeu)
ds,U

R=h" implicitsigy” (Qev*+
avf(Qev)” Qsv)

Z=Xr

(Z = mavp((dsy, Qs_,v), (dey,
Qe,V)a QS,UiQe,U) using (qi a,
b, G, n, and h):
implicitsigy=de v+ avf(Qev)
ds,V

R=h"implicitsigy” (Qeut
an(Qe,U), Qs,u)

Z=Xr

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData])

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData])

5.11 Full MQV with Key Confirmation

This scheme provides an example of how Key Confirmation could be provided for the Full MQV
scheme.

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters. The entities
must determine the MAC scheme and the hash function to be used.

This scheme provides all security attributes to both parties. I nteractive communications are
required.

Party U Transmission Party V

Acquire V's static public Qsv

key (Qsv) oo

Generate ephemeral key Qeu

pair (deu, Qeu) USING (q, &, >

b, G, n, and h)

Validate Q’ eU
Qsu Acquire U’ s static public
------------- > | key (Qsu)

Generate ephemeral key

pair (dev, Qev) USINg (q, &,
b, G, n, and h)

Compute the shared value
(Z = mavp((dsv, Q&V_)a (dev,
Qev),.Qsu, Q'eu)) Using (a,
a, b, G, n,and h):
implicitsigy=de\+avf(Qev)
ds,V

R=h" implicitsigy” (Qeu+
an(Qe,U), Qs,U)

Z=Xr

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
macdatalen + keydatalen,
[SharedData])

Create MacData; = 02 || V
[[U || Qev || Qeu || [TeXts]

<

Qev; [Text1], MacTag;

Create MacTag; =
MaCwuacke(MacDatay)

Val | date Q’ eV

Compute the shared value

(2= mavp((dsu, Qsu), (deu,

Qeu),Qsv: Q'ev)) Using (q,
a, b, G, n, and h):
implicitsigy=deu+avi(Qey)
ds,U

R=h"implicitsigy” (Qev*+
an(Qe,V), QSV)

Z=Xr

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
mackeylen + keydatalen,
[SharedData])

Create MacData; = 02 || B
LAl Qev [l Qeu [[Text]

Verify that the received
MacTag; is correct for
MacData;

Create MacData,= 03 || U
[Vl Qeu |l Qev || [Texty]

Create MacTag, =
MaCwuacke(MacDatay)

[Text], MacTag,

Create MacData,= 03 || U

18

[VI Qeu ll Qev || [Texts]

Verify that the received
MacTag, is correct for
MacData,

6. Key Transport Schemes

No scheme is provided in ANSI X9.42 for key transport.

6.1 OnePass Transport

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity who may act as a responder generates a static encryption key pair (denc, Qenc)
using the system parameters and is bound to that key pair (e.g., by a certificate). Each entity who
may act as an initiator must be bound to a unique identifier (e.g., in a certificate). The entities

must also determine the hash function to be used.

This scheme provides Implicit Key Authentication and Key Compromise |mpersonation

resilience for the initiator (U) only. Interactive or store-and-forward communications may be

used.

Party U

Transmission

Party V

Acquire V’s static public
encryption key (Qencv)

Qenc,B

Form the data to be
encrypted: EncData= U ||
KeyData || [Text]

Encrypt EncData with V's
public key : EncryptedData
= Egencyv

(EncData, [SharedDatay],
[SharedDatay)))

EncryptedData

Decrypt Encrypted Data
using dencv to get EncData

Parse the initiator’ s identity
(V) and KeyData from
EncData

Verify that EncryptedData
was received from U

6.2 Three PassKey Transport

19

The system encryption and signature parameters ((Qenc, @enc, Denc, Genc, Nenc, Nenc) @nd (Csig, asig,
bsg, Gsg, Nsig, Nsig)) are generated for the “system” (a.community of users). Each entity generates
asignature key pair (dsg, Qsig) using the system parameters. Each entity who may act as an
initiator generates an encryption key pair (denc, Qenc) UsiNg the system parameters. The entities
must also determine the hash function and challenge length to be used.

This scheme provides Implicit Key Authentication, Explicit Key Authentication, Entity
Authentication, Key Compromise Impersonation resilience and Unknown Key-share resilience to
both parties, and Known-Key Security to both parties when used in conjunction with the elliptic
curve augmented encryption scheme. Interactive communications are required.

Party U Transmission Party V
Acquire V’s signature and Qsigvs Qencv
encryption public keys Qe m e e e e e e oo
Generate a challenge Challengey
(Challengey) >

Verify that Challengey is
the correct length

Qsigus Qenc,u Acquire U’ s signature and
------------- > | encryption public keys

Generate Challengey

Create EncData = V ||
KeyData || [Texti]

Encrypt EncData and,
optionally, SharedData;
and SharedData, using
Qenc,U) (Qenc, Aenc; benc, Genc,
Nenc, Nenc): ENcryptedData =
EQenC,U(EncData ”
[SharedDatay] ||

[SharedDatay]

Create SgnData; =
Challengey || Challengey’ ||
U || EncryptedData ||

[Texta])
Challengey, EncryptedData, | Sign SgnDatas using dsigv
[Texty], rsigs, ssig: and (Qsig, asg, bsig: Gsg, Nsig,
< hsg) to get rsig: and ssig;
Verify that the received
Challengey is the correct
length

Decrypt EncryptedData
USiNg (Clenc, @enc: Penc, Genc
Nenc, Nenc) @Nd denc u tO
obtain EncData

Parse V'sidentity and

20

KeyData from EncData

Verify that EncryptedData
was received from V

Create SgnData; =
Challenge,/ || Challengey ||
U || EncryptedData ||
[Textl]

Verify that the received
rsig:;’and ssig;’are valid for
SgnData; using Qsg.v; (Gsig;
Asig, Psig, Gsig, Nsig, Nsig)

Create SgnData, =
Challengey || Challenge,' ||
V|| [Text,]

Sign SgnData, using dsg,u
and (qgg, Asig; bsig, Gsig, Nsig,
hsg) to get rsigy and ssigy

Create SgnData, =
Challengey’ || Challengey ||
V|| [Text,]

Verify that the received
rsig,’ andssig,’ arevalid
for SgnData, using Qsigu
and (dsg, sigs bsg, Gsig, Nsig,
hsig)

21

